

Guided by an Expert Teacher

Accurate and blazingly fast variant effect prediction using protein language model embeddings

Julius Schlensok, Céline Marquet, Marina Abakarova, Burkhard Rost & Elodie Laine

Motivation

Understanding the impact of single amino acid variants (SAVs) on protein function

Motivation

Understanding the impact of single amino acid variants (SAVs) on protein function

Motivation

Understanding the impact of single amino acid variants (SAVs) on protein function

Experimental answer

Deep Mutational Scanning (DMS)

Quantification of mutational outcomes on a large scale

<u>Protocol</u>

Library of mutants

Phenotype

All possible substitutions at all positions localization, growth, enzyme function, binding...

Experimental answer

Deep Mutational Scanning (DMS)

Quantification of mutational outcomes on a large scale

<u>Protocol</u>

Library of mutants

All possible substitutions at all positions

localization, growth, enzyme function, binding...

The largest collection of DMS datasets

ProteinGym substitution benchmark

~1.5M SAVs across 72 protein families

https://www.proteingym.org

Notin *et al.* 2022

ProteinGym substitution benchmark

A wide variety of proteins...

- between 70 and 3500 residues
- kinases, ion channels, g-protein coupled receptors, polymerases, transcription factors, tumor suppressors...

... and phenotypes

- thermostability, ligand binding, aggregation, viral replication, and drug resistance

Between 1 and 4 DMS assays per protein

Multiple mutation assays for 11 proteins

DMS (or MAVE) experiments remain too costly for proteome scanning.

ProteinGym substitution benchmark

A wide variety of proteins...

DMS (or MAVE) experiments remain too costly for proteome scanning.

ProteinGym substitution benchmark

A wide variety of proteins...

DMS (or MAVE) experiments remain too costly for proteome scanning.

Computational predictive methods

<u>Supervised</u>

Polyphen-2 (Adzhubei *et al.* 2013) Envision (Gray *et al.* 2018) Song *et al.* 2021 VESPA (Marquet *et al.* 2022) FiTMuSiC (Tsishyn *et al.* 2023)

...

SOTA methods leverage protein sequence information across species. A few also exploit population data.

Weakly or Un-supervised

CADD (Kircher et al. 2014) DCA (Figliuzzi et al. 2016) DeepSequence (Riesselman et al. 2018) GEMME (Laine et al. 2019) PrimateAI (Sundaram *et al.* 2019) EVE (Frazer et al. 2021) ESM (Meier *et al.* 2021) Tranception (Notin *et al.* 2022) PoET (Truong Jr and Bepler 2023)

AlphaMissense (Cheng et al. 2023)

•••

Explicitly exploiting natural sequences evolutionary history

GEMME - an evolutionary-informed predictor

Input

Query-centered multiple sequence alignment (MSA)

•				
>	-			
				(
				``
				-
<	-			
•				
2				
3				
)			 	
	-			
5				

Output

Complete single-mutational landscape of the query

Aligned homologous sequences

http://www.lcab.upmc.fr/GEMME/Home.html

GEMME - an evolutionary-informed predictor

Main hypotheses: - conservation is an indicator of mutational sensitivity

- epistasis: positions interact with each other

Joint Evolutionary Trees

S. Engelen et al. PLOS CB 2009

http://www.lcab.upmc.fr/GEMME/Home.html

GEMME - an evolutionary-informed predictor

Main hypotheses: - conservation is an indicator of mutational sensitivity

- epistasis: positions interact with each other

A measure of conservation accounting for the global context

Joint Evolutionary Trees

S. Engelen et al. PLOS CB 2009

http://www.lcab.upmc.fr/GEMME/Home.html

GEMME - an evolutionary-informed predictor

<u>Main hypotheses:</u> - **conservation** is an indicator of mutational sensitivity - **epistasis**: positions interact with each other

A measure of **conservation** accounting for the global context

Joint Evolutionary Trees

S. Engelen et al. PLOS CB 2009

http://www.lcgb.upmc.fr/GEMME/Home.html

GEMME - an evolutionary-informed predictor

Main hypotheses: - **conservation** is an indicator of mutational sensitivity

- epistasis: positions interact with each other

S. Engelen et al. PLOS CB 2009

8 E.Laine *et al.* MBE 2019

GEMME provides a <mark>clear readout</mark> of the input alignment.

M. Abakarova et al. GBE 2023

M. Abakarova et al. GBE 2023

Modeling raw protein sequence data at scale

J. Searle's Chinese Room thought experiment

- High capacity transformers
- Input: single sequence (length L)
 Output: high dimensional embedding d x L
- Trained on hundreds of millions of protein sequences to reconstruct masked tokens

L T ?? E L T L A S R Q Q L

- High capacity transformers
- Input: single sequence (length L)
 Output: high dimensional embedding d x L
- Trained on hundreds of millions of protein sequences to reconstruct masked tokens

- High capacity transformers
- Input: single sequence (length L)
 Output: high dimensional embedding d x L
- Trained on hundreds of millions of protein sequences to reconstruct masked tokens
- They can be used a zero-shot variant effect predictors through their log-odd ratios.

$$\log \frac{P(x^{mut})}{P(x^{wt})}$$

But they do not reach the state of the art.

But they do not reach the state of the art.

Variant Effect Score Prediction without Alignments

Variant Effect Score Prediction without Alignments

ProteinGym leaderboard

Rank 🗍	Model name	Model type	Avg. Spearman 🌢
1	TranceptEVE L	Hybrid model	0.472
2	GEMME	Alignment-based model	0.459
3	EVE (ensemble)	Alignment-based model	0.449
4	Tranception L	Hybrid model	0.446
5	VESPA	Protein language model	0.444
6	EVE (single)	Alignment-based model	0.443
7	MSA Transformer (ensemble)	Hybrid model	0.432
8	Tranception M	Hybrid model	0.430
9	DeepSequence (ensemble)	Alignment-based model	0.421
10	MSA Transformer (single)	Hybrid model	0.421
11	Tranception S	Hybrid model	0.419
12	EVmutation	Alignment-based model	0.413
13	Progen2 (ensemble)	Protein language model	0.413
14	VESPA1	Protein language model	0.408
15	DeepSequence (single)	Alignment-based model	0.404

Mapping learnt representations to mutational landscape with an expert teacher

VespaG

<u>Main idea</u>:

Directly mapping protein language model (pLM) embeddings to mutational landscapes, using an evolutionary-informed model (GEMME) as a teacher.

<u>Advantages</u>:

- Avoids the costly computation of log-odd ratios for all substitutions
- Largely increases the body of annotations
- Improves annotations' consistency

ProteinGym set (1.5M missense mutations)

VespaG achieves results similar to state-of-the-art methods.

<u>ProteinGym non-viral</u> set (~1.4M missense mutations)

Performance increases when we disregard viral proteins.

In line with previous observations that pLMs do not behave well with viral sequences.

<u>ProteinGym non-viral</u> set (~1.4M missense mutations)

<u>MaveHum23</u> 23 DMS exp for 20 Human proteins (~266k SAVs) from Cheng et al. 2023

MaveHum23 23 DMS exp for 20 Human proteins (~266k SAVs) from from Cheng et al. 2023

Influence of the training set

Dataset	Humók 🗼	Droso5k 🌺	Ecoli2k 🇯	Virus4k 🔅	All18k
Organism	H.sapiens	D.melanogaster	E.coli	All viral in SwissProt ¹	All
#(proteins)	6 294	5 650	2 108	4 027	18 079

- The performance saturate after a few thousands training proteins.
- Training on a high-quality proteome from a model species suffices.

Influence of the training set

Dataset	Humók 🗼	Droso5k 🌺	Ecoli2k 🇯	Virus4k 💢	All18k
Organism	H.sapiens	D.melanogaster	E.coli	All viral in SwissProt ¹	All
#(proteins)	6 294	5 650	2 108	4 027	18 079

Training on viral sequences does not help for predicting viral variant effects. Runtime

runtime on ProtionGym benchmark (87 proteins)

VespaG provides blazingly fast state-of-the-art variant effect predictions from single-sequence-derived pLM embeddings.

Measured @ 64G RAM & 32 CPU cores (+46G VRAM for VESPA), excluding embedding/MSA generation

Conclusions and perspectives

VespaG can...

- directly map pLM embeddings to mutational landscapes
- transfer knowledge across organisms
- produce accurate predictions of variant effects
- scan entire protomes within an hour

VespaG does not...

- deal well with viral sequences

=> needs further investigation to understand the relationship between predictive performance and the availability of homologous sequences.

institut universitaire de France

Thank you!

European Research Council Established by the European Commission