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Objective

Prediction of phenotype from gene expressions

I Machine learning is increasingly used for transcriptomic-based predictions
I Example: prediction of cancer type or the likelihood of a patient responding to a

specific treatment

I Challenging due to the high dimensionality and small-to-moderate sample size
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Objective

I Genes are organized into regulatory networks in cells
→ some works have used the gene network information to improve phenotype
predictions

I Gene network: gene regulatory network, protein-protein interaction (PPI) network,
co-expression network etc.
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Earlier work in this field

Problem: predict y (numerical) from X (multivariate, dimension p) with a linear
model:

y = X × β + ε

Examples:

I [Rapaport et al., 2007]: y is irradiated/not irradiated sample and X is gene
expression. A network is given on the p genes based on KEGG metabolic pathways

I [Li and Li, 2008]: y is time to death (Glioblastoma) and X is gene expression. A
network is given on the p genes based on KEGG metabolic pathways
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Background and notations

We have a network (graph) G, with p nodes v1, . . . , vp and edges between these nodes

An important matrix: the Laplacian

LGij =


−1 if i 6= j and vi and vj are linked by an edge

0 if i 6= j and vi and vj are not linked by an edge

di if i = j

with di the degree of nodes vi
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Eigendecomposition of the Laplacian

L is symmetric and positive so it can be decomposed into:

L =

p∑
i=1

λieie
T
i

with λi the eigenvalues (in increasing order) and ei the orthonormal eigenvectors in Rp

To extract the most relevant information from the network, use the eigenvectors
associated to the smallest eigenvalues:

I low pass filter: FG =
∑r

i=1 λieie
T
i for r < p

I regularization: FG =
∑p

i=1 φ(λi )eie
T
i with φ(λi ) = e−βλi or 1

λi
for instance
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[Rapaport et al., 2007]

I Transformation of expression profiles: spectral decomposition of gene
expression profiles with respect to the eigenfunctions of the Laplacian

Sφ(xj) =

p∑
i=1

xjiφ(λi )ei

I Optimization problem:

min
β∈Rp

n∑
i=1

`
(
βtSφ(xi ), yi

)
+ C‖β‖2
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p. 8



How to use L in prediction models ? [Li and Li, 2008]

Incorporate information on the gene network by using a network constrained
regularization:

arg min
β∈Rp

n∑
i=1

(
βtxi − yi

)2
+ λ1β

TLβ + λ2‖β‖1

Motivation: genes that are linked on the network are expected to have similar
functions and therefore smoothed regression coefficients

Implemented in R package glmgraph (not maintained, archived on CRAN)
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Graph Neural Networks

I Recently graph neural networks (GNN) were proposed for phenotype prediction
I Particular type of convolutional neural network:

I a graph representing pairwise relationships between nodes is used to drive the
convolution

I GNN can be used to solve different problems:
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Overview of GNN

General idea: the representation of a node is computed from the representations of
nodes in the neighborhood

The last layer is fed to a standard MLP for prediction
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Message passing layers

Generalization of convolutional layers to graph data

The representation of node vi is learned iteratively with:

h0
vi

= xi

ht+1
vi

= F
(
htvi ,�vj∈N (vi )φt(h

t
vi
, htvj )

)
I �: differential permutation invariant function (mean, sum)

I F and φt : parameterized functions which parameters are learned during the
training
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Example of message passing layer

ht+1
vi

= F

Wt
1

N(vi )

∑
vj∈N (vi )

htvj + Bth
t
vi


Wt ,Bt : trainable weight matrices

Matrix formulation:
Ht+1 = F

(
D−1AHtW T

t + HtBT
t

)
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p. 14



GNN in practice

GNN libraries:

I Spektral [Grattarola and Alippi, 2020]
I based on tensorflow

I PyTorch Geometric [Fey and Lenssen, 2019]
I based on PyTorch

I also Graph Nets, Deep Graph Library
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Graph Neural Networks for phenotype prediction

I Some authors have used GNNs for phenotype prediction
I Example: metastatic event prediction

I They used biological knowledge on gene regulatory networks:
I PPI networks or co-expression networks
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Graph Neural Networks for phenotype prediction

Each patient is represented as a graph signal:

I the molecular network structures the genes and is the same for every patient

I patient’s gene-expressions are assigned to the vertex of the network

Phenotype prediction is addressed as a graph classification task
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Graph Neural Networks for phenotype prediction

I In other fields of applications, recent works tend to show that GNNs are
frequently over-complex for the task
[Errica et al., 2020, Böther et al., 2022, Santana et al., 2023]

I [Smith et al., 2020] even showed that classical ML methods often outperform
deep learning for phenotype prediction

I ⇒ simpler models can obtain comparable results

I Ratio between benefits and costs (in particular computational) of these methods ?
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Benchmark

Comprehensive and reproducible benchmark comparing GNN to other ML methods for
transcriptomic-based phenotype prediction

I We used previously published datasets and models

I Systematic comparison using a common ground methodology
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Published works

I BreastCancer [Chereda et al., 2021]:
I prediction of metastasis within the first 5 years in breast cancer
I PPI network (HPRD)

I CancerType [Ramirez et al., 2020]:
I classification of different tumor and non-tumor samples into 33 cancer types or as

normal (data from TCGA)
I PPI network and co-expression network

GNN for phenotype prediction
23/11/2023 / Céline Brouard
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Published works

I F1000 [McDermott et al., 2020]:
I gene expression profiles over 76 cell lines, that are treated with bioactive small

molecules or genetic perturbations (LINCS)
I 3 classification tasks : prediction of primary site (tissue type), subtype, drug

mechanism of action
I network of transcription-factor and micro-RNA regulatory relationships from several

external datasets (RegNetwork)

These 3 works used the model and the implementation of [Defferrard et al., 2016].
This model uses Chebnets as convolutional layer and graph coarsening as pooling.
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Chebnets [Defferrard et al., 2016]

It is based on a spectral decomposition of the graph

y = gθ(L)x =
K∑

k=0

θkTk(L̃)x

I L̃: scaled Laplacian

I Tk : Chebyshev polynomial of order k

I θk : layer’s trainable parameters

It can capture information from a node’s wider neighborhood by including
higher-degree polynomials
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GCN [Kipf and Welling, 2017]

I More scalable approach by using a first-order approximation of spectral graph
convolution

I A linear model w.r.t. L is considered by limiting K to 1.

I Using this model and a single parameter θ, the equation simplifies to:

y = θ
(
I + D−

1
2AD−

1
2

)
x
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Graph coarsening [Defferrard et al., 2016]

1. Multilevel clustering algorithm: each level produces a coarser graph (the size of
the graph is reduced by a factor 2)
I At each level, a vertex i is matched to the neighbor j that maximizes Aij(

1
di

+ 1
dj

)

2. Fast pooling
I Vertices are arranged such that a graph pooling operation becomes as efficient as

a 1D pooling
I Creation of a balanced binary tree: fake (disconnected) nodes are added to pair

with singletons
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Datasets

Dataset # nodes# observations Prediction type
(# classes)

BreastCancer [Chereda et al., 2021] 6,888 969 Classification (2)

CancerType [Ramirez et al., 2020] 4,444 11,070 Classification (34)

F1000 prostate [McDermott et al., 2020] 978 25,565 Classification (9)

F1000 full [McDermott et al., 2020] 978 156,461 Classification
(12, 14, 49)

Simulated (new) 21 100 Regression
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Simulated dataset

I Using the simulation tool sismonr

I Dataset generated from 20 genes

I 200 times steps were simulated for 100 independent individuals
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p. 28



Comparison

Comparison with different approaches:

I Standard machine learning methods: random forest, multilayer perceptron,
SVM

I glmgraph: graph-constrained regression model

I GNN

I GNNo: GNN based on convolution between observations rather than between
features

We systematically used cross-validation
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p. 29



Implementations

I GNN:

I We kept the coarsening approach
I We implemented the convolutional layer using the Spektral library and the neural

network model in tensorflow/keras

I GNNo: modification of the implementation of GNN from keras

GNN for phenotype prediction
23/11/2023 / Céline Brouard
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Implementations

We also run the same methods with different implementations:

I multilayer perceptron: functions from the Python libraries scikit-learn and
keras/tensorflow 2

I SVM: Python library scikit-learn and the R package e1071

I random forests: Python library scikit-learn and the R package randomForest
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Results: test accuracy

BreastCancer CancerType

F1000 prostate F1000 full (subtype)

I Good reproducibility of published
results

I Except in F1000 full, GNN is not
the best method

I Unlike GNN, other methods (MLP,
RF, SVM) were used with default
hyperparameters

I No clear winner stands out

I GNN performs better than GNNo
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Results: computational time

BreastCancer CancerType

F1000 prostate F1000 full (subtype)

I glmgraph is the most
computationally demanding method
for BreastCancer (not represented
for the sake of readability)

I SVM is strongly influenced by the
number of samples and the number
of classes

I GNN computational time is
increased when both the number of
samples and the number of genes
are large
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Impact of the implementations: accuracy
BreastCancer F1000 full (subtype)

CancerType
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Impact of the implementations: computational time

However, the improvements came sometimes at the cost of a larger computational
time.
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Impact of the input graph

In order to see the usefulness of the added information in graph based models, we also
used these methods with naive graphs for the BreastCancer dataset:

I Cor: simple thresholding of the Pearson correlation matrix between genes

I random: random permutation between gene edges (to obtain random graph with
same degree distribution)

I complete: complete graph
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Impact of the input graph

I The impact of the input network is not visible

I For GNN and glmgraph, the random and complete networks achieve better performance that
networks based on biological knowledge
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Results: simulated data
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Results: simulated data
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Discussion

I Standard ML methods, not explicitly accounting for the dependency structure
between genes, frequently obtain better or comparable performance on the
prediction task

I In addition, benchmarking with real expression datasets and irrelevant networks do
not show decrease in performance compared to using a biologically relevant gene
network

I When the network is perfectly known, better performances are obtained with GNN
and glmgraph

I The lack of improvement for GNN with real data might be due to the low
accuracy of available gene networks
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Perspectives

Graph structure learning: learn simultaneously the relevant graph for the prediction
task and the GNN’s parameters

I Few existing hybrid approaches, and not always relevant for omics data

I Difficulty: learning a discrete structure while descent gradient is used for learning
GNN’s parameters
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p. 41



References

(unofficial) Beamer template made with the help of Thomas Schiex and Andreea Dreau:
https://forgemia.inra.fr/nathalie.villa-vialaneix/bainrae
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